HTScan® PKCµ Kinase Assay Kit

100 assays (96 Well Format)

Orders 877-616-CELL (2355)

orders@cellsignal.com

Support 877-678-TECH (8324)

info@cellsignal.com

Web www.cellsignal.com

rev. 08/13/07

This product is for in vitro research use only and is not intended for use in humans or animals.

Products Included	Products #	Kit Quantity
Phospho-PKA Substrate (RRXS/T) (100G7) Rabbit mAb	9624	30 µІ
Kinase Buffer (10X)	9802	15 ml
ATP (10 mM)	9804	1 ml
CREB (Ser133) Biotinylated Peptide	1331	1.25 ml
PKCμ Kinase (recombinant, human)	7602	5 μg

Description: The kit provides a means of performing kinase activity assays with recombinant human PKD/PKCµ kinase. It includes active PKD/PKCµ kinase (supplied as a GST fusion protein), a biotinylated peptide substrate and a phospho-serine/threonine antibody for detection of the phosphorylated form of the substrate peptide.

Peptide Core Sequence: RRPS*YRK

Molecular Weights: Peptide substrate, Biotin-peptide: 2,326 Daltons. GST-PKD/PKCµ Kinase domain: 133 kDa.

Background: Activation of PKC is one of the earliest events in a cascade leading to a variety of cellular responses such as secretion, gene expression, proliferation and muscle contraction (1,2). Protein kinase D (PKD), also called PKC μ , is a serine/ threonine kinase whose activation is dependent on the phosphorylation of two activation loop sites, Ser744 and Ser748, via a PKC-dependent signaling pathway (3,4,5). In addition to the two activation loop sites, the carboxy-terminal Ser916 has been identified as an autophosphorylation site for PKD/PKC μ . Phosphorylation at Ser916 correlates with PKD/PKC μ catalytic activity (6).

Figure 1. PKD/PKCµ kinase activity was measured in a radiometric assay using the following reaction conditions: 60 mM HEPES-NaOH, pH 7.5, 5 mM MgCl₂₇ 1.32 mM CaCl₂₇ 1 mM EDTA, 1.25 mM EGTA, 0.25 µg/50 µl phosphatidylserine, 50 ng/50 µl 1.2 Dioleyl-glycerol, 1.2 mM DTT, ATP (variable), 2.5 µg/50 µl PEG20.000, Substrate: tetra (LRRWSLG), 0.5 µg/50 µl and recombinant PKD/PKCµ: 200 ng/50 µl.

Source/Purification: The GST-Kinase fusion protein was produced using a baculovirus expression system with a construct expressing full length human PKD/PKCµ (Met1–Leu912) (GenBank Accession No. NM_002742) with an amino-terminal GST tag. The protein was purified by onestep affinity chromatography using glutathione-agarose.

Quality Control: The substrate peptide was selected using our Serine/Threonine Kinase Substrate Screening Kit #7400. Phospho-PKA Substrate (RRXS/T) (100G7) Rabbit mAb #9624 was used for detection. The quality of the biotinylated peptide was evaluated by reverse-phase HPLC and by mass spectrometry.

Purified PKD/PKCµ kinase was quality controlled for purity by SDS-PAGE followed by Coomassie stain and Western blot. PKD/PKCµ kinase specific activity was determined using a radiometric assay [Fig.1]. Time course [Fig.2], kinase dose-dependency [Fig.3] and substrate dose-dependency [Fig.4] assays were performed to verify PKD/PKCµ activity using the PKD/PKCµ substrate peptide provided in this kit. PKD/PKCµ sensitivity to the inhibitor staurosporine was measured using the PKD/PKCµ substrate peptide provided in this kit [Fig.5].

Background References:

- (1) Nishizuka, Y. (1984) Nature 308, 693-698
- (2) Keranen, L.M. et al. (1995) Curr. Biol. 5, 1394-1403.
- (3) Valverde, A.M. et al. (1994) *Proc. Natl. Acad. Sci.* 91, 8572–8576.
- (4) Johannes, F.J. et al. (1994) *J. Biol. Chem.* 269, 6140–6148.
- (5) Iglesias, T. et al. (1998) *J. Biol. Chem.* 273, 27662–27667.
- (6) Matthews, S.A. et al. (1999) *J. Biol. Chem.* 274, 26543–26549.

Storage: Antibodies are supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 μ g/ml BSA and 50% glycerol. Do not aliquot the antibodies. Peptides are supplied at 6 μ M in 0.001% DMSO. Enzymes are supplied in 50 mM Tris-HCL (pH 8.0), 100 mM NaCl, 5 mM DTT, 15 mM reduced glutathione and 20% glycerol. Store at -80° C.

Keep enzymes on ice during use.

Avoid repeated freeze-thaw cycles.

Companion Products:

Serine/Threonine Kinase Substrate Screening Kit #7400

PKCµ Kinase #7602

Phospho-PKA Substrate (RRXS/T) (100G7) Rabbit mAb #9624

CREB (Ser133) Biotinylated Peptide #1331

Staurosporine #9953

Kinase Buffer (10X) #9802

ATP (10 mM) #9804

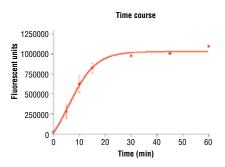


Figure 2. Time course of PKD/PKCµ kinase activity: DELFIA® data generated using Phospho-PKA Substrate (RRXS/T) (100G7) Rabbit mAb #9624 to detect phosphorylation of PKD/PKCµ substrate peptide (#1331) by PKD/PKCµ kinase. In a 50 µl reaction, 10 ng PKD/PKCµ and 1.5 µM substrate peptide were used per reaction. (DELFIA® is a registered trademark of PerkinElmer, Inc.)

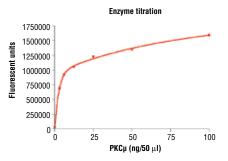


Figure 3. Dose dependence curve of PKD/PKCµ kinase activity: DELFIA® data generated using Phospho-PKA Substrate (RRXS/T) (100G7) Rabbit mAb #9624 to detect phosphorylation of substrate peptide (#1331) by PKD/PKCµ kinase. In a 50 µl reaction, increasing amounts of PKD/PKCµ and 1.5 µM substrate peptide were used per reaction at room temperature for 15 minutes. (DELFIA® is a registered trademark of PerkinElmer, Inc.)

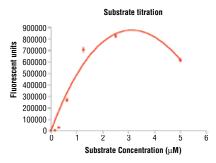


Figure 4. Peptide concentration dependence of PKD/PKCµ kinase activity: DELFIA® data generated using Phospho-PKA Substrate (RRXS/T) (100G7) Rabbit mAb #9624 to detect phosphorylation of substrate peptide (#1331) by PKD/PKCµ kinase. In a 50 µl reaction, 10 ng of PKD/PKCµ and increasing concentrations of substrate peptide were used per reaction at room temperature for 15 minutes. (DELFIA® is a registered trademark of PerkinElmer, Inc.)

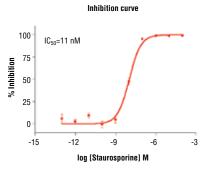


Figure 5. Staurosporine inhibition of PKD/PKCμ kinase activity: DELFIA® data generated using Phospho-PKA Substrate (RRXS/T) (100G7) Rabbit mAb #9624 to detect phosphorylation of PKD/PKCμ substrate peptide (#1331) by PKD/PKCμ kinase. In a 50 μl reaction, 10 ng PKD/PKCμ, 1.5 μM substrate peptide, 20 μM ATP and increasing amounts of staurosporine were used per reaction at room temperature for 15 minutes. (DELFIA® is a registered trademark of PerkinElmer, Inc.)

Protocol for HTScan® PKCµ Kinase Assay Kit

Kinase

Note: Lot-specific information for this kinase is provided on the enzyme vial. Optimal assay incubation times and enzyme concentrations must be determined empirically for each lot of kinase under specified conditions.

A Additional Solutions and Reagents (Not included)

1. Wash Buffer: 1X PBS, 0.05% Tween-20 (PBS/T)

Bovine Serum Albumin (BSA)
Stop Buffer: 50 mM EDTA pH 8

DELFIA® is a registered trademark of PerkinElmer Life Sciences

B Suggested Protocol for 100 Assays

- Add 100 µl 10 mM ATP to 1.25 ml 6 µM substrate peptide. Dilute the mixture with dH₂0 to 2.5 ml to make 2X ATP/substrate cocktail ([ATP]=400 µM, [substrate] = 3 µm).
- 2. Transfer enzyme from -80°C to ice. Allow enzyme to thaw on ice.
- Microcentrifuge briefly at 4°C to bring liquid to the bottom of the vial. Return immediately to ice.
- Add 1 ml 10X kinase buffer [1 ml 10X Kinase Buffer 250 mM Tris-HCl pH 7.5, 100 mM MgCl₂, 1 mM Na₃VO₄, 50 mM β-glycerophosphate, 20 mM dithiothreitol (DTT) to 1.5 ml dH₂0 to make 2.5 ml 4X reaction buffer.
- Transfer 1.2 ml of 4X Reaction buffer to each enzyme tube to make 4X reaction cocktail ([enzyme]) = 4 ng/µl in 4X reaction cocktail).
- Add 12.5 µI of the 4X reaction cocktail to 12.5 µI/well of prediluted compound of interest (usually around 10 µM) and incubate for 5 minutes at room temperature.
- Add 25 μI of 2X ATP/substrate cocktail to 25 μI/well preincubated reaction cocktail/compound.

Final Assay Conditions for a 50 µl Reaction

25 mM Tris-HCI (pH 7.5)

10 mM MgCl₂

5 mM β-glycerophosphate

0.1 mM Na₃VO₄

2 mM DTT

 $200 \, \mu M \, ATP$

1.5 µM peptide

10 ng PKC μ Kinase

- **8.** Incubate reaction plate at room temperature for 30 minutes.
- $\boldsymbol{9.}$ Add 50 $\mu\text{I/well}$ Stop Buffer (50 mM EDTA, pH 8) to stop the reaction.
- **10.** Transfer 25 μ I of each reaction to a 96-well streptavidin-coated plate containing 75 μ I dH₂O/well and incubate at room temperature for 60 minutes.
- **11.** *Wash three times with 200 μl/well PBS/T.
- 12. Dilute primary antibody, Phospho-PKA Substrate (RRXS/T) (100G7) Rabbit mAb, 1:1000 in PBS/T with 1% BSA. Add 100 µl/well primary antibody.
- 13. Incubate at room temperature for 120 minutes.
- 14. *Wash three times with 200 µl/well PBS/T.
- For DELFIA® or Colorimetric ELISA detection methods please use the following protocols.

DELFIA® Assay

- Prepare appropriate dilution of Europium labeled secondary antibody in PBS/T with 1% BSA (1:500 dilution for anti-mouse IgG or 1:1000 for anti-rabbit IgG).
- 2. Add 100 µl/well secondary antibody solution.
- 3. Incubate at room temperature for 30 minutes.
- 4. *Wash five times with 200 μl/well PBS/T.
- 5. Add 100 µl/well DELFIA® Enhancement Solution.
- **6.** Incubate at room temperature for 5 minutes.
- 7. Read plate using a Time Resolved Fluorescent plate reader using the following settings:

a. Excitation Filter: 340 nm **b.** Emission Filter: 615 nm **c.** Delay**: 400 µs

** Delay time is the delay from the excitation pulse to the beginning of the measurement.

Companion Products for DELFIA®

DELFIA® Europium-labeled Anti-mouse IgG (PerkinElmer Life Sciences #AD0124) DELFIA® Europium-labeled Anti-rabbit IgG (PerkinElmer Life Sciences #AD0105) DELFIA® Enhancement Solution (PerkinElmer Life Sciences #1244-105) DELFIA® Streptavidin coated, 96-well, yellow plate (PerkinElmer Life Sciences AAAND-0005)

Colorimetric ELISA Assay

- Prepare appropriate dilution of HRP labeled secondary antibody in PBS/T with 1% BSA (1:500 dilution for anti-mouse IgG or 1:1000 for anti-rabbit IgG).
- 2. Add 100 µl/well secondary antibody solution.
- **3.** Incubate at room temperature for 30 minutes.
- 4. *Wash five times with 200 µl/well PBS/T.
- **5.** Add 100 µl/well TMB substrate.
- **6.** Incubate at room temperature for 15 minutes.
- 7. Add 100 µl/well of stop solution.
- 8. Mix well.
- 9. Read the absorbance at 450 nm with a microtiter plate reader.

Companion Products For Colorimetric ELISA Assay

Anti-mouse IgG, HRP Linked Antibody #7076 Anti-rabbit IgG, HRP Linked Antibody #7074

TMB Solution #7004 Stop Solution #7002

*NOTE: Use of an automated microplate washer as well as centrifugation of plates when appropriate, greatly improves reproducibility.

Please contact Cell Signaling Technology for HTS-ready antibodies (PBS formulated and carrier-free), and detailed peptide substrate sequence information.

Email: drugdiscovery@cellsignal.com